Thursday 29 July 2010

Discovery of diamagnetism--researches on magne-crystallic action.

~~An extract~~

Faraday's thoughts ran intuitively into experimental combinations, so that subjects whose capacity for experimental treatment would, to ordinary minds, seem to be exhausted in a moment, were shown by him to be all but inexhaustible. He has now an object in view, the first step towards which is the proof that the principle of Archimedes is true of magnetism. He forms magnetic solutions of various degrees of strength, places them between the poles of his magnet, and suspends in the solutions various magnetic bodies. He proves that when the solution is stronger than the body plunged in it, the body, though magnetic, is repelled; and when an elongated piece of it is surrounded by the solution, it sets, like a diamagnetic body, equatorially between the excited poles. The same body when suspended in a solution of weaker magnetic power than itself, is attracted as a whole, while an elongated portion of it sets axially.

...After the description of the general character of this new force, Faraday states with the emphasis here reproduced its mode of action: 'The law of action appears to be that the line or axis of MAGNE-CRYSTALLIC force (being the resultant of the action of all the molecules) tends to place itself parallel, or as a tangent, to the magnetic curve, or line of magnetic force, passing through the place where the crystal is situated.' The magne-crystallic force, moreover, appears to him 'to be clearly distinguished from the magnetic or diamagnetic forces, in that it causes neither approach nor recession, consisting not in attraction or repulsion, but in giving a certain determinate position to the mass under its influence.' And then he goes on 'very carefully to examine and prove the conclusion that there was no connection of the force with attractive or repulsive influences.' With the most refined ingenuity he shows that, under certain circumstances, the magne-crystallic force can cause the centre of gravity of a highly magnetic body to retreat from the poles, and the centre of gravity of a highly diamagnetic body to approach them. His experiments root his mind more and more firmly in the conclusion that 'neither attraction nor repulsion causes the set, or governs the final position' of the crystal in the magnetic field. That the force which does so is therefore 'distinct in its character and effects from the magnetic and diamagnetic forms of force. On the other hand,' he continues, 'it has a most manifest relation to the crystalline structure of bismuth and other bodies, and therefore to the power by which their molecules are able to build up the crystalline masses.'

And here follows one of those expressions which characterize the conceptions of Faraday in regard to force generally:--'It appears to me impossible to conceive of the results in any other way than by a mutual reaction of the magnetic force, and the force of the particles of the crystals upon each other.' He proves that the action of the force, though thus molecular, is an action at a distance; he shows that a bismuth crystal can cause a freely suspended magnetic needle to set parallel to its magne-crystallic axis. Few living men are aware of the difficulty of obtaining results like this, or of the delicacy necessary to their attainment. 'But though it thus takes up the character of a force acting at a distance, still it is due to that power of the particles which makes them cohere in regular order and gives the mass its crystalline aggregation, which we call at other times the attraction of aggregation, and so often speak of as acting at insensible distances.' Thus he broods over this new force, and looks at it from all possible points of inspection. Experiment follows experiment, as thought follows thought. He will not relinquish the subject as long as a hope exists of throwing more light upon it. He knows full well the anomalous nature of the conclusion to which his experiments lead him. But experiment to him is final, and he will not shrink from the conclusion. 'This force,' he says, 'appears to me to be very strange and striking in its character. It is not polar, for there is no attraction or repulsion.' And then, as if startled by his own utterance, he asks--'What is the nature of the mechanical force which turns the crystal round, and makes it affect a magnet?'... 'I do not remember,' he continues 'heretofore such a case of force as the present one, where a body is brought into position only, without attraction or repulsion.'

Plucker, the celebrated geometer already mentioned, who pursued experimental physics for many years of his life with singular devotion and success, visited Faraday in those days, and repeated before him his beautiful experiments on magneto-optic action. Faraday repeated and verified Plucker's observations, and concluded, what he at first seemed to doubt, that Plucker's results and magne-crystallic action had the same origin.

At the end of his papers, when he takes a last look along the line of research, and then turns his eyes to the future, utterances quite as much emotional as scientific escape from Faraday. 'I cannot,' he says, at the end of his first paper on magne-crystallic action, 'conclude this series of researches without remarking how rapidly the knowledge of molecular forces grows upon us, and how strikingly every investigation tends to develop more and more their importance, and their extreme attraction as an object of study. A few years ago magnetism was to us an occult power, affecting only a few bodies, now it is found to influence all bodies, and to possess the most intimate relations with electricity, heat, chemical action, light, crystallization, and through it, with the forces concerned in cohesion; and we may, in the present state of things, well feel urged to continue in our labours, encouraged by the hope of bringing it into a bond of union with gravity itself.'

The law of action in relation to this point is, that in diamagnetic crystals, the line along which the repulsion is a maximum, sets equatorially in the magnetic field; while in magnetic crystals the line along which the attraction is a maximum sets from pole to pole. Faraday had said that the magne-crystallic force was neither attraction nor repulsion. Thus far he was right. It was neither taken singly, but it was both. By the combination of the doctrine of diamagnetic polarity with these differential attractions and repulsions, and by paying due regard to the character of the magnetic field, every fact brought to light in the domain of magne-crystallic action received complete explanation. The most perplexing of those facts were shown to result from the action of mechanical couples, which the proved polarity both of magnetism and diamagnetism brought into play. Indeed the thoroughness with which the experiments of Faraday were thus explained, is the most striking possible demonstration of the marvellous precision with which they were executed.
~~Author: John Tyndall
http://worldebooklibrary.org/eBooks/WorldeBookLibrary.com/fdayd.htm

No comments: